There are two basic types of data marts: dependent and independent. The categorization is based primarily on the data source that feeds the data mart. Dependent data marts draw data from a central data warehouse that has already been created. Independent data marts, in contrast, are standalone systems built by drawing data directly from operational or external sources of data, or both.
The main difference between independent and dependent data marts is how you populate the data mart; that is, how you get data out of the sources and into the data mart. This step, called the Extraction-Transformation-and Loading (ETL) process, involves moving data from operational systems, filtering it, and loading it into the data mart.
With dependent data marts, this process is somewhat simplified because formatted and summarized (clean) data has already been loaded into the central data warehouse. The ETL process for dependent data marts is mostly a process of identifying the right subset of data relevant to the chosen data mart subject and moving a copy of it, perhaps in a summarized form.
With independent data marts, however, you must deal with all aspects of the ETL process, much as you do with a central data warehouse. The number of sources is likely to be fewer and the amount of data associated with the data mart is less than the warehouse, given your focus on a single subject.
The motivations behind the creation of these two types of data marts are also typically different. Dependent data marts are usually built to achieve improved performance and availability, better control, and lower telecommunication costs resulting from local access of data relevant to a specific department. The creation of independent data marts is often driven by the need to have a solution within a shorter time.
The main difference between independent and dependent data marts is how you populate the data mart; that is, how you get data out of the sources and into the data mart. This step, called the Extraction-Transformation-and Loading (ETL) process, involves moving data from operational systems, filtering it, and loading it into the data mart.
With dependent data marts, this process is somewhat simplified because formatted and summarized (clean) data has already been loaded into the central data warehouse. The ETL process for dependent data marts is mostly a process of identifying the right subset of data relevant to the chosen data mart subject and moving a copy of it, perhaps in a summarized form.
With independent data marts, however, you must deal with all aspects of the ETL process, much as you do with a central data warehouse. The number of sources is likely to be fewer and the amount of data associated with the data mart is less than the warehouse, given your focus on a single subject.
The motivations behind the creation of these two types of data marts are also typically different. Dependent data marts are usually built to achieve improved performance and availability, better control, and lower telecommunication costs resulting from local access of data relevant to a specific department. The creation of independent data marts is often driven by the need to have a solution within a shorter time.